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(57) ABSTRACT

A high performance computing (HPC) system includes
computing blades having a first region that includes com-
puting circuit boards having processors for performing a
computation, and a second region that includes non-volatile
memory for use in performing the computation. The regions
are connected by a plurality of power connectors that convey
power from the computing circuit boards to the memory, and
a plurality of data connectors that convey data between the
first and second regions. The power and data connectors are
configured redundantly so that failure of a computing circuit
board, a power connector, or a data connector does not
interrupt the computation. A method of performing such a
computation, and a computer program product implement-
ing the method, are also disclosed.
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~ Receiving a series of instructions in
a plurality of computing circuit F
| boards in a first region of a
computing blade

™~ Receiving data in a non-volatile

7

“memory located in a second region
of the computing blade “

'Beginning execution of the series of
instructions, using the received
data

~ Continuing execution of the series
- of instructions after failure of the
‘ computing circuit board ‘

FIG. 8
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a plurality of computing circuit
boards in a first region of a
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of the computing blade

instructions, using the first data

Continuing execution, without
| interruption, of the series of
instructions while receiving secon
 data into the non-volatile memory
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LOCALIZED FAST BULK STORAGE IN A
MULTI-NODE COMPUTER SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 61/806,716, filed Mar. 29, 2013, the con-
tents of which are incorporated herein by reference in their
entirety.

FIELD OF THE INVENTION

The invention generally relates to storage accessing and
control in a multi-node computer system and, more particu-
larly, the invention relates to providing and accessing bulk
removable solid state storage by computing nodes using a
high-speed bus.

BACKGROUND OF THE INVENTION

As high performance computing (“HPC”) systems have
gotten more powerful, they have been increasingly used for
computations based on rigidly defined mathematical models.
For example, a weather simulation may be based on a series
of'equations having an exact mathematical representation, as
might a finite element analysis for determining heat flow
around the leading edge of an airplane wing or stresses in a
bar of steel. These simulations generate synthetic data; that
is, data based not on reality, but based on the mathematical
model of reality used to define the bounds of the simulation.
The worth of such models may be judged by how closely
their computed results are demonstrated in reality (e.g., by
observing the weather, or building an airplane wing or a bar
of steel and testing it in a laboratory).

However, such models generally are incapable of pro-
cessing data that derive from real measurement instruments
(e.g. anemometers, thermometers, torsion gauges and the
like). As these instruments have developed in complexity
and efficiency, the amount of data that they generate has
multiplied greatly. The size and location of these volumes of
data as they are being generated are going to stress global
infrastructures, and the cost of simply moving or storing data
will become a significant issue in the future. More “real
world” data than ever before are available for analysis in the
development of scientific models, and as technology
improves the quantity of data surely will continue to
increase. Real data are more useful to analyze than simulated
or synthetic data, but the HPC systems of today are largely
optimized for heavy computation, and are not capable of
quickly accessing the vast amounts of real data that mea-
surement instruments can generate.

Some leading-edge measurement instruments like the
Square Kilometer Array telescope will be able to produce
raw data at speeds of up to 1000 petabytes (1 billion
gigabytes) per day. This data must be sorted, filtered, and
analyzed. While it is conceptually possible to filter these
data to only 0.1% of their raw size (i.e., to 1 petabyte per
day) for analysis, remote processing still is likely to be
problematic. One petabyte per day is about 12.13 gigabytes
per second on average (more during bursts), a channel
capacity that is greater than long-haul systems like the
Internet can handle. Because the data cannot be sent else-
where for processing, rapid local access to bulk data is
therefore needed in HPC systems.

SUMMARY OF VARIOUS EMBODIMENTS

Various embodiments of the invention provide a high
performance computing (“HPC”) system with computing
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2

blades that provide an extension space that includes bulk
storage, and methods for moving data into and out of this
space and storing the data. The bulk storage may use solid
state devices, such as flash memory, and unused data transfer
capacity to provide low access latency and high transfer
rates. Multiple computing boards within a blade may coop-
erate to provide fault-tolerant power to the extension space.
The bulk storage may be mounted in the extension space
using a drawer for easy physical access and replacement as
more raw data become available.

The computing blades having a first region that includes
processors for performing a computation, and a second
region that includes non-volatile memory for use in per-
forming the computation and another computing processor
for performing data movement and storage. Because data
movement and storage are offloaded to the secondary pro-
cessor, the processors for performing the computation are
not interrupted to perform these tasks. A method for use in
the HPC system receives instructions in the computing
processors and first data in the memory. The method
includes receiving second data into the memory while
continuing to execute the instructions in the computing
processors, without interruption.

Therefore, a first embodiment of the invention is an HPC
system having a plurality of computing blades that each
have at least one computing circuit board, wherein a plu-
rality of the computing circuit boards in the HPC system are
configured to cooperate to perform a computation. At least
one given computing blade has a housing, a plurality of
power connectors, and a plurality of data connectors. The
housing has a first region and a second region, the first
region having a plurality of independently powered com-
puting circuit boards that are used in performing the com-
putation, the second region having a non-volatile memory
that is used in performing the computation. The power
connectors convey power from the computing circuit boards
in the first region to the second region. The data connectors
convey data for use in performing the computation between
the computing circuit boards in the first region and the
non-volatile memory in the second region. The power con-
nectors and data connectors are configured so that the
non-volatile memory in the second region may be used in
performing the computation after failure of a computing
circuit board in the first region, a power connector, or a data
connector.

Several variations are contemplated. The second region of
the housing may include a telescoping drawer that facilitates
service access to the second region. The non-volatile
memory may be solid state memory. The power connectors
and the data connectors together may comprise a riser circuit
board or an expansion card implementing an expansion bus
standard such as PCI Express. The expansion card may
implement a RAID using the non-volatile memory.

If the given computing blade is adjacent to a second
computing blade, the system may further include a power
connector for providing power from the given computing
blade and the second computing blade collectively to the
non-volatile memory, wherein the power connector is con-
figured to provide power to the non-volatile memory after
failure of one of the two computing blades. The system may
also include a data connector for transferring data between
the given computing blade and the second computing blade,
wherein the data connector is configured to transfer data to
and from the non-volatile memory after failure of one of the
computing blades.

In accordance with another embodiment of the invention,
a method of performing a computation in the HPC system is
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disclosed. The method includes receiving a series of instruc-
tions, that comprise a portion of the computation, in a
plurality of computing circuit boards located in a first region
of a given computing blade. Next, the method requires
receiving data in a non-volatile memory located in a second
region of the given computing blade, the non-volatile
memory being coupled to the plurality of computing circuit
boards in the first region using a plurality of power connec-
tors and a plurality of data connectors. Then, the method
calls for beginning to perform the computation by execution
of the series of instructions using the received data. Finally,
the method concludes by continuing to execute, without
interruption, the series of instructions using the received
data after failure of a computing circuit board in the first
region, a power connector in the plurality of power connec-
tors, or a data connector in the plurality of data connectors.

This method may be varied in the same way as discussed
above in the context of the system embodiment. Moreover,
there is contemplated a tangible, computer-readable medium
in which is non-transitorily stored computer program code
for performing the method and its variations.

BRIEF DESCRIPTION OF THE DRAWINGS

Those skilled in the art should more fully appreciate
advantages of various embodiments of the invention from
the following “Description of Illustrative Embodiments,”
discussed with reference to the drawings summarized imme-
diately below.

FIG. 1 schematically shows a logical view of an HPC
system in accordance with one embodiment of the present
invention.

FIG. 2 schematically shows a physical view of the HPC
system of FIG. 1.

FIG. 3 schematically shows details of a blade chassis of
the HPC system of FIG. 1.

FIG. 4 shows a blade having two computing circuit boards
that cooperate to provide power to an extension space in
accordance with an embodiment of the invention.

FIG. 5A shows an unfolded plan view of the hardware of
the two circuit boards of FIG. 4, where the extension space
is configured according to one embodiment of the invention.

FIG. 5B shows the power and data connections of FIG.
5A.

FIG. 6 A shows an unfolded plan view of the hardware of
the two circuit boards of FIG. 4, where the extension space
is configured according to a second embodiment of the
invention.

FIG. 6B shows the power and data connections of FIG.
6A.

FIG. 7A shows an unfolded plan view of the hardware of
the two circuit boards of FIG. 4, where the extension space
is configured according to a third embodiment of the inven-
tion.

FIG. 7B shows the power and data connections of FIG.
7A.

FIG. 8 is a flowchart showing a method of performing a
computation in an HPC system, according to an embodiment
of the invention.

FIG. 9 schematically shows a system for moving bulk
data into the extension space of an embodiment.

FIG. 10 schematically shows a system for moving bulk
data into the extension space of another embodiment.

FIG. 11 is a flowchart showing a method of performing a
computation in an HPC system, according to the system of
FIG. 10.
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DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

In illustrative embodiments, a high performance comput-
ing (“HPC”) system has computing blades that provide an
extension space that includes bulk storage. The bulk storage
may use solid state devices, such as flash memory, and
unused data transfer capacity to provide low access latency
and high transfer rates. Multiple computing boards within a
blade may cooperate to provide fault-tolerant power to the
extension space. The bulk storage may be mounted in the
extension space using a drawer for easy physical access and
replacement as more raw data become available. Details of
illustrative embodiments are discussed below.

System Architecture

FIG. 1 schematically shows a logical view of an exem-
plary high-performance computing system 100 that may be
used with illustrative embodiments of the present invention.
Specifically, as known by those in the art, a “high-perfor-
mance computing system,” or “HPC system,” is a comput-
ing system having a plurality of modular computing
resources that are tightly coupled using hardware intercon-
nects, so that processors may access remote data directly
using a common memory address space.

The HPC system 100 includes a number of logical com-
puting partitions 120, 130, 140, 150, 160, 170 for providing
computational resources, and a system console 110 for
managing the plurality of partitions 120-170. A “computing
partition” (or “partition”) in an HPC system is an adminis-
trative allocation of computational resources that runs a
single operating system instance and has a common memory
address space. Partitions 120-170 may communicate with
the system console 110 using a logical communication
network 180. A system user, such as a scientist or engineer
who desires to perform a calculation, may request compu-
tational resources from a system operator, who uses the
system console 110 to allocate and manage those resources.
Allocation of computational resources to partitions is
described below. The HPC system 100 may have any
number of computing partitions that are administratively
assigned as described in more detail below, and often has
only one partition that encompasses all of the available
computing resources. Accordingly, this figure should not be
seen as limiting the scope of the invention.

Each computing partition, such as partition 160, may be
viewed logically as if it were a single computing device,
akin to a desktop computer. Thus, the partition 160 may
execute software, including a single operating system
(“OS”) instance 191 that uses a basic input/output system
(“BIOS”) 192 as these are used together in the art, and
application software 193 for one or more system users.

Accordingly, as also shown in FIG. 1, a computing
partition has various hardware allocated to it by a system
operator, including one or more processors 194, volatile
memory 195, non-volatile storage 196, and input and output
(“I/O”) devices 197 (e.g., network cards, video display
devices, keyboards, and the like). However, in HPC systems
like the embodiment in FIG. 1, each computing partition has
a great deal more processing power and memory than a
typical desktop computer. The OS software may include, for
example, a Windows® operating system by Microsoft Cor-
poration of Redmond, Wash., or a Linux operating system.
Moreover, although the BIOS may be provided as firmware
by a hardware manufacturer, such as Intel Corporation of
Santa Clara, Calif., it is typically customized according to
the needs of the HPC system designer to support high-
performance computing, as described below in more detail.
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As part of its system management role, the system console
110 acts as an interface between the computing capabilities
of the computing partitions 120-170 and the system operator
or other computing systems. To that end, the system console
110 issues commands to the HPC system hardware and
software on behalf of the system operator that permit, among
other things: 1) booting the hardware, 2) dividing the system
computing resources into computing partitions, 3) initializ-
ing the partitions, 4) monitoring the health of each partition
and any hardware or software errors generated therein, 5)
distributing operating systems and application software to
the various partitions, 6) causing the operating systems and
software to execute, 7) backing up the state of the partition
or software therein, 8) shutting down application software,
and 9) shutting down a computing partition or the entire
HPC system 100. These particular functions are described in
more detail in the section below entitled “System Opera-
tion.”

FIG. 2 schematically shows a physical view of a high
performance computing system 100 in accordance with the
embodiment of FIG. 1. The hardware that comprises the
HPC system 100 of FIG. 1 is surrounded by the dashed line.
The HPC system 100 is connected to a enterprise data
network 210 to facilitate user access.

The HPC system 100 includes a system management node
(“SMN”) 220 that performs the functions of the system
console 110. The management node 220 may be imple-
mented as a desktop computer, a server computer, or other
similar computing device, provided either by the enterprise
or the HPC system designer, and includes software neces-
sary to control the HPC system 100 (i.e., the system console
software).

The HPC system 100 is accessible using the data network
210, which may include any data network known in the art,
such as an enterprise local area network (“LAN”), a virtual
private network (“VPN”), the Internet, or the like, or a
combination of these networks. Any of these networks may
permit a number of users to access the HPC system
resources remotely and/or simultaneously. For example, the
management node 220 may be accessed by an enterprise
computer 230 by way of remote login using tools known in
the art such as Windows® Remote Desktop Services or the
Unix secure shell. If the enterprise is so inclined, access to
the HPC system 100 may be provided to a remote computer
240. The remote computer 240 may access the HPC system
by way of a login to the management node 220 as just
described, or using a gateway or proxy system as is known
to persons in the art.

The hardware computing resources of the HPC system
100 (e.g., the processors, memory, non-volatile storage, and
1/0 devices shown in FIG. 1) are provided collectively by
one or more “blade chassis,” such as blade chassis 252, 254,
256, 258 shown in FIG. 2, that are managed and allocated
into computing partitions. A blade chassis is an electronic
chassis that is configured to house, power, and provide
high-speed data communications between a plurality of
stackable, modular electronic circuit boards called “blades.”
Each blade includes enough computing hardware to act as a
standalone computing server. The modular design of a blade
chassis permits the blades to be connected to power and data
lines with a minimum of cabling and vertical space.

Accordingly, each blade chassis, for example blade chas-
sis 252, has a chassis management controller 260 (also
referred to as a “chassis controller” or “CMC”) for manag-
ing system functions in the blade chassis 252, and a number
of blades 262, 264, 266 for providing computing resources.
Each blade, for example blade 262, contributes its hardware
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6

computing resources to the collective total resources of the
HPC system 100. The system management node 220 man-
ages the hardware computing resources of the entire HPC
system 100 using the chassis controllers, such as chassis
controller 260, while each chassis controller in turn manages
the resources for just the blades in its blade chassis. The
chassis controller 260 is physically and electrically coupled
to the blades 262-266 inside the blade chassis 252 by means
of a local management bus 268, described below in more
detail. The hardware in the other blade chassis 254-258 is
similarly configured.

The chassis controllers communicate with each other
using a management connection 270. The management
connection 270 may be a high-speed LAN, for example,
running an Ethernet communication protocol, or other data
bus. By contrast, the blades communicate with each other
using a computing connection 280. To that end, the com-
puting connection 280 illustratively has a high-bandwidth,
low-latency system interconnect, such as Numal ink, devel-
oped by Silicon Graphics International Corp. of Fremont,
Calif.

The chassis controller 260 provides system hardware
management functions to the rest of the HPC system. For
example, the chassis controller 260 may receive a system
boot command from the SMN 220, and respond by issuing
boot commands to each of the blades 262-266 using the local
management bus 268. Similarly, the chassis controller 260
may receive hardware error data from one or more of the
blades 262-266 and store this information for later analysis
in combination with error data stored by the other chassis
controllers. In some embodiments, such as that shown in
FIG. 2, the SMN 220 or an enterprise computer 230 are
provided access to a single, master chassis controller 260
that processes system management commands to control the
HPC system 100 and forwards these commands to the other
chassis controllers. In other embodiments, however, an
SMN 220 is coupled directly to the management connection
270 and issues commands to each chassis controller indi-
vidually. Persons having ordinary skill in the art may con-
template variations of these designs that permit the same
type of functionality, but for clarity only these designs are
presented.

The blade chassis 252, its blades 262-266, and the local
management bus 268 may be provided as known in the art.
However, the chassis controller 260 may be implemented
using hardware, firmware, or software provided by the HPC
system designer. Each blade provides the HPC system 100
with some quantity of processors, volatile memory, non-
volatile storage, and I/O devices that are known in the art of
standalone computer servers. However, each blade also has
hardware, firmware, and/or software to allow these comput-
ing resources to be grouped together and treated collectively
as computing partitions, as described below in more detail in
the section entitled “System Operation.”

While FIG. 2 shows an HPC system 100 having four
chassis and three blades in each chassis, it should be
appreciated that these figures do not limit the scope of the
invention. An HPC system may have dozens of chassis and
hundreds of blades; indeed, HPC systems often are desired
because they provide very large quantities of tightly-coupled
computing resources.

FIG. 3 schematically shows a single blade chassis 252 in
more detail. In this figure, parts not relevant to the imme-
diate description have been omitted. The chassis controller
260 is shown with its connections to the system management
node 220 and to the management connection 270. The
chassis controller 260 may be provided with a chassis data
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store 302 for storing chassis management data. In some
embodiments, the chassis data store 302 is volatile random
access memory (“RAM”), in which case data in the chassis
data store 302 are accessible by the SMN 220 so long as
power is applied to the blade chassis 252, even if one or
more of the computing partitions has failed (e.g., due to an
OS crash) or a blade has malfunctioned. In other embodi-
ments, the chassis data store 302 is non-volatile storage such
as a hard disk drive (“HDD”) or a solid state drive (“SSD”).
In these embodiments, data in the chassis data store 302 are
accessible after the HPC system has been powered down and
rebooted.

FIG. 3 shows relevant portions of specific implementa-
tions of the blades 262 and 264 for discussion purposes. The
blade 262 includes a blade management controller 310 (also
called a “blade controller” or “BMC”) that executes system
management functions at a blade level, in a manner analo-
gous to the functions performed by the chassis controller at
the chassis level. For more detail on the operations of the
chassis controller and blade controller, see the section
entitled “System Operation” below. The blade controller 310
may be implemented as custom hardware, designed by the
HPC system designer to permit communication with the
chassis controller 260. In addition, the blade controller 310
may have its own RAM 316 to carry out its management
functions. The chassis controller 260 communicates with the
blade controller of each blade using the local management
bus 268, as shown in FIG. 3 and the previous figures.

The blade 262 also includes one or more processors 320,
322 that are connected to RAM 324, 326. Blade 262 may be
alternately configured so that multiple processors may
access a common set of RAM on a single bus, as is known
in the art. It should also be appreciated that processors 320,
322 may include any number of central processing units
(“CPUSs”) or cores, as is known in the art. The processors
320, 322 in the blade 262 are connected to other items, such
as a data bus that communicates with I/O devices 332, a data
bus that communicates with non-volatile storage 334, and
other buses commonly found in standalone computing sys-
tems. (For clarity, FIG. 3 shows only the connections from
processor 320 to these other devices.) The processors 320,
322 may be, for example, Intel® Core™ processors manu-
factured by Intel Corporation. The I/O bus may be, for
example, a PCI or PCI Express (“PCle”) bus. The storage
bus may be, for example, a SATA, SCSI, or Fibre Channel
bus. It will be appreciated that other bus standards, processor
types, and processor manufacturers may be used in accor-
dance with illustrative embodiments of the present inven-
tion.

Each blade (e.g., the blades 262 and 264) includes an
application-specific integrated circuit 340 (also referred to as
an “ASIC”, “hub chip”, or “hub ASIC”) that controls much
of its functionality. More specifically, to logically connect
the processors 320, 322, RAM 324, 326, and other devices
332, 334 together to form a managed, multi-processor,
coherently-shared distributed-memory HPC system, the pro-
cessors 320, 322 are electrically connected to the hub ASIC
340. The hub ASIC 340 thus provides an interface between
the HPC system management functions generated by the
SMN 220, chassis controller 260, and blade controller 310,
and the computing resources of the blade 262.

In this connection, the hub ASIC 340 connects with the
blade controller 310 by way of a field-programmable gate
array (“FPGA”) 342 or similar programmable device for
passing signals between integrated circuits. In particular,
signals are generated on output pins of the blade controller
310, in response to commands issued by the chassis con-
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troller 260. These signals are translated by the FPGA 342
into commands for certain input pins of the hub ASIC 340,
and vice versa. For example, a “power on” signal received
by the blade controller 310 from the chassis controller 260
requires, among other things, providing a “power on” volt-
age to a certain pin on the hub ASIC 340; the FPGA 342
facilitates this task.

The field-programmable nature of the FPGA 342 permits
the interface between the blade controller 310 and ASIC 340
to be reprogrammable after manufacturing. Thus, for
example, the blade controller 310 and ASIC 340 may be
designed to have certain generic functions, and the FPGA
342 may be used advantageously to program the use of those
functions in an application-specific way. The communica-
tions interface between the blade controller 310 and ASIC
340 also may be updated if a hardware design error is
discovered in either module, permitting a quick system
repair without requiring new hardware to be fabricated.

Also in connection with its role as the interface between
computing resources and system management, the hub ASIC
340 is connected to the processors 320, 322 by way of a
high-speed processor interconnect 344. In one embodiment,
the processors 320, 322 are manufactured by Intel Corpo-
ration which provides the Intel® QuickPath Interconnect
(“QPI”) for this purpose, and the hub ASIC 340 includes a
module for communicating with the processors 320, 322
using QPI. Other embodiments may use other processor
interconnect configurations.

The hub chip 340 in each blade also provides connections
to other blades for high-bandwidth, low-latency data com-
munications. Thus, the hub chip 340 includes a link 350 to
the computing connection 280 that connects different blade
chassis. This link 350 may be implemented using network-
ing cables, for example. The hub ASIC 340 also includes
connections to other blades in the same blade chassis 252.
The hub ASIC 340 of blade 262 connects to the hub ASIC
340 of blade 264 by way of a chassis computing connection
352. The chassis computing connection 352 may be imple-
mented as a data bus on a backplane of the blade chassis 252
rather than using networking cables, advantageously allow-
ing the very high speed data communication between blades
that is required for high-performance computing tasks. Data
communication on both the inter-chassis computing connec-
tion 280 and the intra-chassis computing connection 352
may be implemented using the Numalink protocol or a
similar protocol.

System Operation

System management commands generally propagate from
the SMN 220, through the management connection 270 to
the blade chassis (and their chassis controllers), then to the
blades (and their blade controllers), and finally to the hub
ASICS that implement the commands using the system
computing hardware.

As a concrete example, consider the process of powering
on an HPC system. In accordance with exemplary embodi-
ments of the present invention, the HPC system 100 is
powered when a system operator issues a “power on”
command from the SMN 220. The SMN 220 propagates this
command to each of the blade chassis 252-258 by way of
their respective chassis controllers, such as chassis control-
ler 260 in blade chassis 252. Each chassis controller, in turn,
issues a “power on” command to each of the respective
blades in its blade chassis by way of their respective blade
controllers, such as blade controller 310 of blade 262. Blade
controller 310 issues a “power on” command to its corre-
sponding hub chip 340 using the FPGA 342, which provides
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a signal on one of the pins of the hub chip 340 that allows
it to initialize. Other commands propagate similarly.

Once the HPC system is powered on, its computing
resources may be divided into computing partitions. The
quantity of computing resources that are allocated to each
computing partition is an administrative decision. For
example, an enterprise may have a number of projects to
complete, and each project is projected to require a certain
amount of computing resources. Different projects may
require different proportions of processing power, memory,
and /O device usage, and different blades may have differ-
ent quantities of the resources installed. The HPC system
administrator takes these considerations into account when
partitioning the computing resources of the HPC system
100. Partitioning the computing resources may be accom-
plished by programming each blade’s RAM 316. For
example, the SMN 220 may issue appropriate blade pro-
gramming commands after reading a system configuration
file.

The collective hardware computing resources of the HPC
system 100 may be divided into computing partitions
according to any administrative need. Thus, for example, a
single computing partition may include the computing
resources of some or all of the blades of one blade chassis
252, all of the blades of multiple blade chassis 252 and 254,
some of the blades of one blade chassis 252 and all of the
blades of blade chassis 254, all of the computing resources
of the entire HPC system 100, and other similar combina-
tions. Hardware computing resources may be partitioned
statically, in which case a reboot of the entire HPC system
100 is required to reallocate hardware. Alternatively and
preferentially, hardware computing resources are partitioned
dynamically while the HPC system 100 is powered on. In
this way, unallocated resources may be assigned to a parti-
tion without interrupting the operation of other partitions.

It should be noted that once the HPC system 100 has been
appropriately partitioned, each partition may be considered
to act as a standalone computing system. Thus, two or more
partitions may be combined to form a logical computing
group inside the HPC system 100. Such grouping may be
necessary if, for example, a particular computational task is
allocated more processors or memory than a single operating
system can control. For example, if a single operating
system can control only 64 processors, but a particular
computational task requires the combined power of 256
processors, then four partitions may be allocated to the task
in such a group. This grouping may be accomplished using
techniques known in the art, such as installing the same
software on each computing partition and providing the
partitions with a VPN.

Once at least one partition has been created, the partition
may be booted and its computing resources initialized. Each
computing partition, such as partition 160, may be viewed
logically as having a single OS 191 and a single BIOS 192.
As is known in the art, a BIOS is a collection of instructions
that electrically probes and initializes the available hardware
to a known state so that the OS can boot, and is typically
provided in a firmware chip on each physical server. How-
ever, a single logical computing partition 160 may span
several blades, or even several blade chassis. A blade may be
referred to as a “computing node” or simply a “node” to
emphasize its allocation to a particular partition, however it
will be understood that a physical blade may comprise more
than one computing node if it has multiple processors 320,
322 and memory 324, 326.

Booting a partition in accordance with an embodiment of
the invention requires a number of modifications to be made
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to a blade chassis that is purchased from stock. In particular,
the BIOS in each blade is modified to determine other
hardware resources in the same computing partition, not just
those in the same blade or blade chassis. After a boot
command has been issued by the SMN 220, the hub ASIC
340 eventually provides an appropriate signal to the proces-
sor 320 to begin the boot process using BIOS instructions.
The BIOS instructions, in turn, obtain partition information
from the hub ASIC 340 such as: an identification (node)
number in the partition, a node interconnection topology, a
list of devices that are present in other nodes in the partition,
a master clock signal used by all nodes in the partition, and
so on. Armed with this information, the processor 320 may
take whatever steps are required to initialize the blade 262,
including 1) non-HPC-specific steps such as initializing [/O
devices 332 and non-volatile storage 334, and 2) also
HPC-specific steps such as synchronizing a local hardware
clock to a master clock signal, initializing HPC-specialized
hardware in a given node, managing a memory directory that
includes information about which other nodes in the parti-
tion have accessed its RAM, and preparing a partition-wide
physical memory map.

At this point, each physical BIOS has its own view of the
partition, and all of the computing resources in each node are
prepared for the OS to load. The BIOS then reads the OS
image and executes it, in accordance with techniques known
in the art of multiprocessor systems. The BIOS presents to
the OS a view of the partition hardware as if it were all
present in a single, very large computing device, even if the
hardware itself is scattered among multiple blade chassis
and blades. In this way, a single OS instance spreads itself
across some, or preferably all, of the blade chassis and
blades that are assigned to its partition. Different operating
systems may be installed on the various partitions. If an OS
image is not present, for example immediately after a
partition is created, the OS image may be installed using
processes known in the art before the partition boots.

Once the OS is safely executing, its partition may be
operated as a single logical computing device. Software for
carrying out desired computations may be installed to the
various partitions by the HPC system operator. Users may
then log into the SMN 220. Access to their respective
partitions from the SMN 220 may be controlled using
volume mounting and directory permissions based on login
credentials, for example. The system operator may monitor
the health of each partition, and take remedial steps when a
hardware or software error is detected. The current state of
long-running application programs may be saved to non-
volatile storage, either periodically or on the command of
the system operator or application user, to guard against
losing work in the event of a system or application crash.
The system operator or a system user may issue a command
to shut down application software. Other operations of an
HPC partition may be known to a person having ordinary
skill in the art. When administratively required, the system
operator may shut down a computing partition entirely,
reallocate or deallocate computing resources in a partition,
or power down the entire HPC system 100.

Blade Extension Space

In accordance with illustrative embodiments, computing
blades 262 are modified to include an extension space that
has bulk storage devices that provide non-volatile memory.
In this way, bulk data that are gathered from “real world”
measurement instruments may be placed in direct contact
with computing nodes for extremely low latency and high
bandwidth access using previously unused bus capacity.
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FIG. 4 shows a blade 262 having two computing circuit
boards 410, 420 that cooperate to provide power to an
extension space 432 in accordance with an embodiment of
the invention. These two computing circuit boards, the A
board 410 and the B board 420, include hardware that is
independently operable. In this way, the loss of one board
does not render the entire blade 262 inoperable. For
example, the A board 410 receives power independently
from the B board 420, and the A board 410 may house a
computing processor 320 and RAM 324, while the B board
420 houses a different computing processor 322 and RAM
326, or each board may house multiple processors. Each
board may be configured as a separate computing node, so
that the blade 262 includes two computing nodes. Or, if the
computing processors 320, 322 include a plurality of cores,
each core may be configured as a separate computing node,
as described above. The various hardware components in the
blade 262 are distributed between the circuit boards so that
the nodes may operate independently within the HPC system
100. Although only two circuit boards are shown in the blade
262 for clarity of discussion, it will be appreciated that any
number of boards may be installed in a single blade 262.

In the embodiment of FIG. 4, the blade 262 acts as a
housing for the A board 410 and the B board 420, which are
mounted in opposition in a first region 430 of the blade 262.
The two boards 410, 420 define the boundaries of the first
region 430. Adjacent to the first region is a second region
432 for providing extension space. In an illustrative embodi-
ment of the invention, this extension space houses bulk data
storage, in the form of a non-volatile memory device or
devices. The blade 262 includes two riser circuits, a left riser
440 and a right riser 442. Each riser circuit provides two
power and data connections 450, 452 between the first and
second regions 430, 432 in a fault-tolerant manner. Thus,
these connections 450, 452 convey power from the comput-
ing circuit boards 410, 420 to the bulk data storage in the
second region 432, and convey data between the computing
circuit boards 410, 420 and the bulk data storage. For the
sake of clarity, however, FIG. 4 refers only to the power
connections.

The power and data connections 450, 452 provide power
lines and buses from the A board 410 and B board 420 to the
second region 432 (and in illustrative embodiments, to the
non-volatile memory). The connectors 450, 452 are config-
ured to provide power and data to the second region 432
even after failure of one of the computing circuit boards 410,
420. This is accomplished by providing two risers that
include different circuit routes, as described in more detail in
connection with FIGS. 5 and 6. The power connectors and
the data connectors need not be provided in a single,
physical connector as shown, but may be provided using
separate connectors.

It should be appreciated that the configuration of the
computing circuit boards 410, 420 and the riser boards 440,
442 is physically arranged so that cooling may be provided
throughout the housing provided by the blade 262. Thus, any
fans, heat sinks, or other cooling devices or systems that are
disposed in the first region 430 may be configured so as to
also provide cooling to the second region 432, either by
convective or conductive cooling. Such cooling, if ordinarily
provided as part of the A board 410 or the B board 420, also
may be redundantly provided to the second region 432, so
that loss of either board 410, 420 does not eliminate cooling
in the second region 432.

FIG. 5A shows an unfolded plan view of the hardware of
the two circuit boards of FIG. 4, where the extension space
is configured according to one embodiment of the invention.
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The A board 410 and B board 420 are visible on the left.
These boards define the first region 430. To the right, the
second region 432 includes the left riser 440 (visible at both
top and bottom) and the right riser 442 (visible twice in the
center of the figure on either side of the fold). Each power
or data connection (e.g. connection 450) on each riser is
fitted with a PCI Express expansion card. There are a total
of four such cards 460a-460d. These expansion cards 460a-
460d provide power and data connections to a number of
non-volatile storage devices, which may be solid state
devices (“SSD”) such as flash memory device 470. The data
connections may use lanes of a PCI Express bus that are
otherwise unused by the HPC system 100, thereby providing
data flow into and out of the system without causing any
latency in ongoing calculations.

The second region 432 of the housing may include a
sliding drawer that telescopes out to facilitate service access
to the non-volatile memory 470, as shown. This drawer may
be constructed using manufacturing methods known in the
art, although it should be designed to accommodate easy
access to a potentially large number of storage devices 470
therein, and to the expansion cards 460a-460d. This design
is especially important, for example, if there are a large
number of such storage devices 470, or if they must be
regularly exchanged to ingest incoming measurement data
into the HPC system 100.

FIG. 5B shows the power and data connections of FIG.
5A. As noted above, the power and data connectors are
configured to provide power and data to the second region
432 even after one of the computing circuit boards 410, 420
fails, by configuring different circuit routes in the two riser
circuit boards 440, 442. Thus, the left riser 440 may route
power and data from the A board 410 to its bottom connector
(as shown at the bottom of the figure) and from the B board
420 to its top connector (as shown at the top of the figure),
while the right riser 442 routes power and data from the B
board 420 to its bottom connector and from the A board 410
to its top connector (as shown in the center of the figure).

In FIG. 5B, the four expansion cards 460a-460d are
redundant array of independent disks (“RAID”) controllers
that are coupled to the SSD storage devices 470, for example
using a serial attached SCSI (“SAS”) connection, and access
the devices using a “RAID level” as is known in the art. In
an alternate embodiment, a serial ATA (“SATA”) connection
may be used. The expansion cards 460a-460d provide host
bus adapters that couple the PCI Express bus from the riser
cards 440, 442 to the bus connected to the storage devices
470. Each storage device 470 has a dual port capability,
which means that if a failure occurs along a path to one of
the ports (e.g., due to loss of a single board), the device may
still be operated using the other port.

Extremely high availability is provided as follows. Each
storage device 470 is connected to two RAID controllers
460 using its dual port functionality. Thus, if either RAID
controller fails, the other RAID controller can still operate
all of the storage devices. The two RAID controllers con-
nected to each storage device 470 receive power and data
connections from two different riser circuits 440, 442. Due
to the different circuit paths routing power and data to the
connectors 450, 452 on the different riser circuits 440, 442,
if either riser circuit fails, the other riser circuit includes two
RAID controllers that can control all of the storage devices
470 in the extension space 432. Finally, if either the A board
410 or the B board 420 fails (for example, due to a loss of
power), the two riser circuits 440, 442 each provide power
and data connections to the other board’s RAID controllers.
Each storage device 470 is connected to one of these two
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remaining operable RAID controllers, again due to the
different circuit paths on riser circuits 440, 442 routing
power and data to their respective connectors 450, 452.
Thus, the remainder of the HPC system 100 can still access
all of the data stored in the extension space 432 after a wide
variety of failures, or combinations of failures.

FIG. 6 A shows an unfolded plan view of the hardware of
the two circuit boards of FIG. 4, where the second region
432 is configured according to another embodiment of the
invention. Power and data connections are redundant in
these figures, just as in FIGS. 5A and 5B, and provide the
aforementioned advantages. Unlike FIGS. 5A and 5B, how-
ever, the adapter card 480 and storage devices 490a-490d4
use PCI Express directly, so there is no need for a host bus
adapter. Thus, data access is even lower latency in this
embodiment. In FIG. 6A, the top half connections of the
riser circuits 440, 442 are omitted for clarity only.

In the embodiment of FIG. 6A, the second region 432 is
configured with two adapter cards 480 (only one is shown
for clarity). Each adapter card 480 provides power and data
connections between the two computing circuit boards 410,
420 and a number of PCI Express SSD flash modules
490a-4904. Each flash module 490a-490d may store, for
example, 4 or 8 terabytes of non-volatile memory. However,
because there are no moving parts in the SSD memory,
access times are lower, and channel capacities are higher,
than SAS or SATA hard disk drives. Performance is further
increased by the lack of a need for a host bus adapter.

FIG. 6B shows the power and data connections of FIG.
6A. Each adapter card 480a, 4805 connects power and the
PCI Express bus to four dual-control flash modules 490a-
490d. Each storage device 490a-490d is connected to two
data paths on one of the risers 440, 442 using its dual port
functionality. Each of these two data paths is routed from a
different computing circuit board 410 or 420, so that each
power and data connection 450, 452 includes data paths
from both boards 410, 420. Thus, if either the A board 410
or the B board 420 fails, the other board can still operate all
of the storage devices using all four of the connections 450,
452. Other recoverable failure modes are discussed above in
connection with FIGS. 5A, 5B.

FIG. 7A shows an unfolded plan view of the hardware of
the two circuit boards of FIG. 4, where the extension space
is configured according to a third embodiment of the inven-
tion. In the embodiment of FIG. 7A, two additional riser
cards 444 and 446 are used to double the number of PCI
Express cards that are available to shuttle data between the
boards 410, 420 and the extension space 432. In this way,
additional lanes of the PCI Express bus are used, doubling
throughput while keeping latency the same. FIG. 7B shows
the power and data connections of FIG. 7A. As can be seen
from this figure, the extension space is provided with four
riser circuits 440, 442, 444, 446 rather than just two such
circuits, improving resiliency and bandwidth of data trans-
fer. Other recoverable failure modes are discussed above in
connection with FIGS. 5A, 5B.

The close proximity of computing power and bulk data
storage has several advantages over the prior art. For
instance, a Linux cluster (“Lustre”) file system includes a
metadata server and one or more object storage servers that
provide data to a client device. Typically, these three func-
tions are distributed across a data network such as Infini-
Band and TCP/IP over Ethernet. However, in accordance
with various embodiments of the present invention, no such
data networks are required because the bulk storage is
connected directly to a data bus of the computing blade 262.
Thus, one or two blades 262 can provide the functionality of
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the Lustre system, with higher throughput and lower latency
access to the data, and without requiring additional expense
to set up a separate storage domain.

Also, HPC computations generally require a great deal of
time, so it is known in the art to store the computational state
of the HPC system 100 to non-volatile system memory, for
example to perform back-ups or checkpoints from which to
restart in case of an emergency. Due to the large quantities
of data required to encode the state, the back-up process has
been known to take a great deal of time, so it is repetitively
performed only on a timescale of hours (e.g., a new check-
point is created every four hours). In accordance with
embodiments of the invention, however, access times
between the computing circuit boards 410, 420 and the
non-volatile storage 470, 490 may be so low and bandwidth
s0 high that such checkpoints can be created advantageously
on a timescale of seconds, or even less than a second.
Creating checkpoints in a matter of seconds is highly
advantageous, for a number of reasons. It may permit
multi-tasking of large-scale computations, for example,
because one computation may be “swapped out” to the
non-volatile memory, and a new computing “swapped in”,
very quickly. Or, it may permit calculations to be reset to an
earlier time period in accordance with the requirements of
certain computational algorithms.

As an additional advantage, the localized fast bulk data
storage may be used as a burst buffering system. Some
applications generate large amounts of 1/O traffic in bursts.
To handle these bursts, some HPC systems provide a large
maximum channel throughput (often, at great expense).
However, when no data burst is present, these large channels
operate at well below their maximum capacity, and represent
largely dormant hardware resources. For example, some
prior art systems operate at less than one-third of maximum
bandwidth capacity for 99% of the time. In accordance with
various embodiments of the invention, however, the local-
ized bulk data storage may be used as a burst buffer; that is,
bursty data received by a computing blade 262 may be
quickly stored in the non-volatile memory 470 or 490 until
it can be processed. This buffering process may occur
without interruption or degradation of the I/O latency or
bandwidth in the rest of the system, because it uses other-
wise unused lanes of the blade’s local PCI Express bus. An
HPC system 100 using this improvement may be designed
to have a high capacity, low latency local burst buffer and a
lower interconnect capacity (at reduced cost), or it may have
a higher interconnect capacity and be configured to handle
larger bursts of data.

FIG. 8 is a flowchart showing a method of performing a
computation in the HPC system 100. The method begins in
process 810 with receiving a series of instructions (for
example, program code) in a plurality of computing circuit
boards, for example the A board 410 and the B board 420,
located in a first region 430 of a computing blade 262. These
instructions may be received in conventional fashion, for
example from the system management node 220 using the
management connection 270.

Next, process 820 requires receiving data in a non-volatile
memory such as memory 470, located in a section region
432 of the computing blade 262. These data can be received
either from the system management node 220, or through a
data ingestion network as described in more detail below in
connection with FIGS. 9-11. The non-volatile memory 470
is coupled to the plurality of computing circuit boards 410,
420 using a plurality of power connectors and a plurality of
data connectors (for example, the connectors 450, 452 on the
riser card 442).
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Process 830 involves beginning to perform the computa-
tion by execution of the series of instructions using the
received data. This may be done using techniques known in
the art of HPC systems. However, process 840 requires
continuing to execute, without interruption, the series of
instructions after failure of a computing circuit board (for
example, the A board 410), a power connector, or a data
connector (for example, the connectors 450, 452). This
non-interruption of execution is enabled because, in accor-
dance with various embodiments of the invention, the first
region of the blade is connected to the second region of the
blade using redundant power, data, and cooling. Therefore,
as described above in connection with FIG. 5B, failure of
any one of these components, or even multiple components,
does not produce a system failure that ends the computation,
provided at least one path is available for power and data to
move between the first region 430 of the blade 262 and the
second region 432 of the blade. After process 840, the failed
component may be recognized by a surviving computing
circuit board, which may then transmit an error message to
the system management node 220 according to methods
known in the art. Subsequent to this error message, the
telescoping drawer may be opened to service the failed
components.

Moving Data to and from the Extension Space

FIG. 9 schematically shows a system for moving bulk
data into the extension space 432 described above. A pro-
cessor 320 is shown on a computing circuit board, in this
case A board 410. Data is stored in a non-volatile storage
device, such as SSD memory 910, controlled by a storage
controller 912.

Data may be arrive in the blade from a number of
locations. As a first possibility, data may arrive from another
processor in the HPC system 100. For example, the data may
arrive from a blade 264 using a chassis computing connec-
tion 352. This data would arrive at the processor 320 by way
of the blade’s hub ASIC (not shown) via a processor
interconnect 920. The data may be stored temporarily in the
memory of the board 410, or moved immediately to the
non-volatile memory 910 by way of data connection 930,
which represents the redundant data connection between the
first region and the second region of the blade 262, as
described above in connection with FIGS. 5-7.

As a second possibility, data may arrive from a data
network 940. This may be the case, for example, if the HPC
system 100 is connected to a large data storage facility, such
as a network attached storage (“NAS”) or a storage area
network (“SAN”). In this scenario, the extension space 432
includes a data communication device 950. As shown in
FIG. 9, this device may be a Fiber Channel card; in other
embodiments, this may be a SAS device, an Ethernet card,
or other similar device. The data communication device 950
receives the bulk data from the data network 940, then
transmits it via the data connection 930 to the processor 320.
The data connection 930 represents the redundant data
connection between the first region and the second region of
the blade 262, as described above. As with the first scenario,
the data are then forwarded by the processor 320, using the
data connection 930, to the storage controller 912 in the
extension space 432 for storage on a non-volatile memory
910.

It will be noted that, in accordance with either of these two
data movement methods, the processor 320 must stop
executing whatever program code or instructions it is
executing to move the data between the processor 320 and
the non-volatile memory 910. Movement of data therefore
prevents the processor 320 from devoting all of its time to
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a user-desired computation. Some such computations are
data-intensive, and therefore might require populating the
non-volatile storage capacity of the extension space several
times over. In such situations, it is very disadvantageous to
stop the processor 320 a number of times for long durations
to perform data movement operations, because the compu-
tation takes longer to complete than required.

Therefore, in accordance with an embodiment of the
invention, a system and method are disclosed for moving
data into the extension space 432 without interrupting the
operations of the processor 320. An illustrated embodiment
of the system is shown in FIG. 10. The system operates by
providing one or more additional processors 960a, 9605 in
the extension space 432, whose purpose is to convey data
between the data network 940 and the non-volatile storage
910 without interrupting the computation being performed
by the processor 320.

By way of illustration, the processor 9605 is coupled to
the external data network 940 using a protocol such as Fiber
Channel, SAS, Ethernet as described above in connection
with FIG. 9. The processor 9605 is coupled directly to the
non-volatile storage 910 (and the other non-volatile storage
units). The processor 9605 also is coupled to the computing
processor 320 in the first region of the blade 262, to facilitate
data copying between the computing first region 430 and the
data storing second region 432. The processor 9606 is shown
as an ARM processor, although other types of processors
may be used, including other embedded system processors.
The processor 960a is similarly configured, and it should be
understood that any number of additional such processors
may be present in the extension space 432. It should also be
appreciated that the use of multiple processors 960a, 9605
permits multiple, redundant data connections between the
extension space 432 and the data network 940, with all of the
attendant advantages.

The use of a separate processor 960a or 9605 (or a
plurality of processors) is advantageous, for a number of
reasons. As mentioned above in connection with FIG. 9, the
use of a separate processor permits data to be moved into the
extension space 432 without interrupting an ongoing calcu-
lation. Also, the cost of an additional processor and circuit
board in the extension space 432 is modest compared with
the overall cost of an HPC system 100. Further, the proces-
sors 960a, 9605 may be used to perform general purpose
computation other than the main computation. For instance,
because the processors 960a, 9605 are in the extension space
432 and perform data movement, they may be configured to
track which data have been transferred to the processors 320,
322 and which have not. Such tracking provides the foun-
dation for intelligent data management both in the extension
space 432 and between blades. This data management may
be performed by the processors 960a, 9605 in a manner that
does not interrupt the processors 320, 322 in the computing
region 430.

As another advantage, the rapid movement of data using
a data network external to the blades permits computations
to be performed in a parallel manner, rather than serially as
is currently done. For example, in determining the shape of
a wing for use in an airplane, one might need to develop a
computational fluid dynamics (CFD) model of the airflow
around the wing to determine lift and drag, and also need to
perform a structural integrity analysis of the wing based on
the stresses of the various design materials. In prior art
systems, these computations were performed separately
many times over a variety of wing shapes and designs to
determine various performance curves that had to be manu-
ally optimized by a human skilled in these arts. However, in
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accordance with various embodiments of the present inven-
tion, these computations may be performed in parallel on a
single HPC system, with optimizations from one computa-
tion feeding into the other computation in real time. In this
way, only a single, self-optimizing job needs to be run on the
HPC system 100, rather than hundreds of such jobs.

Also, in various embodiments, the scaling problems of
processing data may be divorced from the scaling problems
of moving and storing the data. The problem of moving data
into and out of the extension space 432 and moving it
between the extension space 432 and the computing space
430 generally scales with the size and type of the compu-
tation. If the size of a computation is increased, the amount
of data it operates on may be proportionately increased.
Moreover, different computations have different data usage
patterns. However, in accordance with illustrated embodi-
ments, the type and cost of the hardware that is used to
implement the computation (i.e., the processors 320, 322)
advantageously may be scaled separately from the type and
cost of the hardware that is used to provide data for the
computation (i.e., the processors 960a, 9605). This differ-
ential scaling permits better (but more expensive) processors
320, 322 to be used for larger computational loads, and
better (but more expensive) processors 960a, 9605 to be
used for larger data movement and storage loads, where the
choices of types, numbers, and costs of the processors may
be made separately or as part of an overall cost-sharing plan
based on business needs.

FIG. 11 is a flowchart showing a method of performing a
computation in an HPC system, according to the system of
FIG. 10. The method begins in process 1110 with receiving
a series of instructions in a plurality of computing circuit
boards, for example the A board 410 and the B board 420,
located in a first region 430 of a computing blade 262. These
instructions may be received in conventional fashion, for
example from the system management node 220 using the
management connection 270.

Next, process 1120 requires receiving data in a non-
volatile memory such as memory 470 or 910, located in a
section region 432 of the computing blade 262. These data
can be received either from the system management node
220, or through the data network 940. The non-volatile
memory 470 is coupled to the plurality of computing circuit
boards 410, 420 using a plurality of power connectors and
a plurality of data connectors (for example, the connectors
450, 452 on the riser card 442).

Process 1130 involves beginning to perform the compu-
tation by execution of the series of instructions using the
received data. This may be done using techniques known in
the art of HPC systems. However, process 1140 requires
continuing to execute, without interruption, the series of
instructions using the first data while simultaneously receiv-
ing second data into the non-volatile memory 470 or 910.
This non-interruption of execution is enabled because, in
accordance with various embodiments of the invention, the
separate processor(s) 960a, 9605 manage the flow of the
second data.

Although the above discussion discloses various exem-
plary embodiments of the invention, it should be apparent
that those skilled in the art can make various modifications
that will achieve some of the advantages of the invention
without departing from the true scope of the invention.

It should be noted that the logic flow diagrams are used
herein to demonstrate various aspects of the invention, and
should not be construed to limit the present invention to any
particular logic flow or logic implementation. The described
logic may be partitioned into different logic blocks (e.g.,
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programs, modules, functions, or subroutines) without
changing the overall results or otherwise departing from the
true scope of the invention. Often times, logic elements may
be added, modified, omitted, performed in a different order,
or implemented using different logic constructs (e.g., logic
gates, looping primitives, conditional logic, and other logic
constructs) without changing the overall results or otherwise
departing from the true scope of the invention.

The present invention may be embodied in many different
forms, including, but in no way limited to, computer pro-
gram logic for use with a processor (e.g., a microprocessor,
microcontroller, digital signal processor, or general purpose
computer), programmable logic for use with a program-
mable logic device (e.g., a Field Programmable Gate Array
(FPGA) or other PLD), discrete components, integrated
circuitry (e.g., an Application Specific Integrated Circuit
(ASIC)), or any other means including any combination
thereof.

Computer program logic implementing all or part of the
functionality previously described herein may be embodied
in various forms, including, but in no way limited to, a
source code form, a computer executable form, and various
intermediate forms (e.g., forms generated by an assembler,
compiler, linker, or locator). Source code may include a
series of computer program instructions implemented in any
of various programming languages (e.g., an object code, an
assembly language, or a high-level language such as Fortran,
C, C++, JAVA, or HTML) for use with various operating
systems or operating environments. The source code may
define and use various data structures and communication
messages. The source code may be in a computer executable
form (e.g., via an interpreter), or the source code may be
converted (e.g., via a translator, assembler, or compiler) into
a computer executable form.

The computer program may be fixed in any form (e.g.,
source code form, computer executable form, or an inter-
mediate form) either permanently or transitorily in a tangible
storage medium, such as a semiconductor memory device
(e.g., a RAM, ROM, PROM, EEPROM, or Flash-Program-
mable RAM), a magnetic memory device (e.g., a diskette or
fixed disk), an optical memory device (e.g., a CD-ROM), a
PC card (e.g., PCMCIA card), or other memory device. The
computer program may be fixed in any form in a signal that
is transmittable to a computer using any of various commu-
nication technologies, including, but in no way limited to,
analog technologies, digital technologies, optical technolo-
gies, wireless technologies (e.g., Bluetooth), networking
technologies, and internetworking technologies. The com-
puter program may be distributed in any form as a remov-
able storage medium with accompanying printed or elec-
tronic documentation (e.g., shrink wrapped software),
preloaded with a computer system (e.g., on system ROM or
fixed disk), or distributed from a server or electronic bulletin
board over the communication system (e.g., the Internet or
World Wide Web).

Hardware logic (including programmable logic for use
with a programmable logic device) implementing all or part
of the functionality previously described herein may be
designed using traditional manual methods, or may be
designed, captured, simulated, or documented electronically
using various tools, such as Computer Aided Design (CAD),
a hardware description language (e.g., VHDL or AHDL), or
a PLD programming language (e.g., PALASM, ABEL, or
CUPL).

Programmable logic may be fixed either permanently or
transitorily in a tangible storage medium, such as a semi-
conductor memory device (e.g., a RAM, ROM, PROM,
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EEPROM, or Flash-Programmable RAM), a magnetic
memory device (e.g., a diskette or fixed disk), an optical
memory device (e.g., a CD-ROM), or other memory device.
The programmable logic may be fixed in a signal that is
transmittable to a computer using any of various commu-
nication technologies, including, but in no way limited to,
analog technologies, digital technologies, optical technolo-
gies, wireless technologies (e.g., Bluetooth), networking
technologies, and internetworking technologies. The pro-
grammable logic may be distributed as a removable storage
medium with accompanying printed or electronic documen-
tation (e.g., shrink wrapped software), preloaded with a
computer system (e.g., on system ROM or fixed disk), or
distributed from a server or electronic bulletin board over
the communication system (e.g., the Internet or World Wide
Web).

What is claimed is:

1. An HPC system having a plurality of housings, each
housing including one or more computing blades that each
have at least one computing circuit boards, wherein a
plurality of the computing circuit boards in the HPC system
are configured to cooperate to perform a computation
defined by a user of the HPC system, and wherein at least
one given housing comprises:

a computing region having a plurality of computing
circuit boards that are used in performing the compu-
tation, each computing circuit board receiving power
from a different power source;

a data storing region having a non-volatile memory that is
used in performing the computation; and

aplurality of riser boards, each riser board being mechani-
cally and electrically coupled to a plurality of comput-
ing circuit boards in the computing region and physi-
cally extending into the data storing region, each riser
board comprising a plurality of power connectors that
convey power from the coupled computing circuit
boards in the computing region to the data storing
region, and a plurality of data connectors that convey
data for use in performing the computation between the
coupled computing circuit boards in the computing
region and the non-volatile memory in the data storing
region;

wherein the riser boards are configured so that the non-
volatile memory in the data storing region are usable,
by a computing circuit board in a housing other than the
given housing, for performing the computation after
failure of one or more of: a power source, a computing
circuit board in the computing region, a riser board, a
power connector, or a data connector.

2. The HPC system of claim 1, wherein the data storing
region of the housing includes a telescoping drawer that
facilitates service access to the data storing region.

3. The HPC system of claim 1, wherein the non-volatile
memory includes solid state memory.

4. The HPC system of claim 1, wherein each riser board
is coupled to at least one expansion card in the data storing
region.

5. The HPC system of claim 4, wherein the at least one
expansion card implements the PCI Express expansion bus
standard.

6. The HPC system of claim 4, wherein the at least one
expansion card comprises a plurality of expansion cards that
each implements a RAID using the non-volatile memory,
and wherein the non-volatile memory in the data storing
region are usable, by a computing circuit board in a housing
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other than the given housing, in performing the computation
after failure of an expansion card in the plurality of expan-
sion cards.

7. The HPC system of claim 1, wherein the given com-
puting blade is adjacent to a second computing blade, the
system further comprising:

a power connector for providing power from the given
computing blade and the second computing blade col-
lectively to the non-volatile memory, wherein the
power connector is configured to provide power to the
non-volatile memory after failure of one of the two
computing blades.

8. The HPC system of claim 7, further comprising:

a data connector for transferring data between the given
computing blade and the second computing blade,
wherein the data connector is configured to transfer
data to and from the non-volatile memory after failure
of one of the computing blades.

9. A method of performing a computation, in an HPC
system having a plurality of housings that each have at least
one computing circuit board, wherein a plurality of com-
puting circuit boards in different housings of the HPC
system are configured to cooperate to perform the compu-
tation, the computation being defined by a user of the HPC
system, the method comprising:

receiving a first series of instructions, that comprise a first
portion of the computation, in a plurality of computing
circuit boards located in a computing region of a first
housing, each such computing circuit board receiving
power from a different power source;

receiving a second series of instructions, that comprise a
second portion of the computation, in a computing
circuit board located in a second housing;

receiving data in a non-volatile memory located in a data
storing region of the first housing, the non-volatile
memory being coupled to the plurality of computing
circuit boards in the computing region using a plurality
of riser boards, each riser board comprising a plurality
of power connectors and a plurality of data connectors;

performing the computation by execution of the first and
second series of instructions using the received data;
and

continuing to execute, without interruption, the second
series of instructions in the computing circuit board
located in the second housing, to perform the compu-
tation using the data received in the data storing region
of the first housing, after failure of: a power source, a
computing circuit board in the computing region of the
first housing, a riser board of the first housing, a power
connector in the plurality of power connectors of the
first housing, or a data connector in the plurality of data
connectors of the first housing.

10. The method of claim 9, further comprising, after the
failure, opening a telescoping drawer to facilitate replace-
ment of a power connector or a data connector.

11. The method of claim 9, wherein receiving the data in
a non-volatile memory includes receiving the data in solid
state memory.

12. The method of claim 9, wherein execution of the
series of instructions using the received data includes a
computing circuit board accessing the non-volatile memory
according to an expansion bus standard.

13. The method of claim 12, wherein the expansion bus
standard is PCI Express.
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14. The method of claim 9, wherein execution of the
series of instructions using the received data includes the
computing circuit board accessing the non-volatile memory
according to a RAID level.
15. A tangible, non-transitory computer-readable medium
having computer program code stored thereon, the computer
program code for performing a computation, in an HPC
system having a plurality of housings that each have at least
one computing circuit board, wherein a plurality of com-
puting circuit boards in different housings of the HPC
system are configured to cooperate to perform the compu-
tation, the computation being defined by a user of the HPC
system, the program code comprising:
program code for receiving a first series of instructions,
that comprise a first portion of the computation, in a
plurality of computing circuit boards located in a
computing region of a first housing, each such com-
puting circuit board receiving power from a different
power source;
program code for receiving a second series of instructions,
that comprise a second portion of the computation, in
a computing circuit board located in a second housing;

program code for receiving data in a non-volatile memory
located in a data storing region of the first housing, the
non-volatile memory being coupled to the plurality of
computing circuit boards in the computing region using
a plurality of riser boards, each riser board comprising
a plurality of power connectors and a plurality of data
connectors;
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program code for performing the computation by execu-
tion of the first and second series of instructions using
the received data; and

program code for continuing to execute, without inter-

ruption, the second series of instructions in the com-
puting circuit board located in the second housing, to
perform the computation using the data received in the
data storing region of the first housing, after failure of:
a power source, a computing circuit board in the
computing region of the first housing, a riser board of
the first housing, a power connector in the plurality of
power connectors of the first housing, or a data con-
nector in the plurality of data connectors of the first
housing.

16. The method of claim 15, wherein receiving the data in
a non-volatile memory includes receiving the data in solid
state memory.

17. The method of claim 15, wherein program code for
execution of the series of instructions using the received data
includes program code for the computing circuit board
accessing the received data according to an expansion bus
standard.

18. The method of claim 17, wherein the expansion bus
standard is PCI Express.

19. The method of claim 15, wherein program code for
execution of the series of instructions using the received data
includes program code for the computing circuit board
accessing the received data according to a RAID level.

#* #* #* #* #*



